ΙΕΦΑΙ

Ινστιτούτο Εφαρμοσμένης Φυσιολογίας & Άσκησης στην Ιατρική

Ελληνικά

25 Ιανουαρίου 2019 - Lifelong aerobic exercise protects against inflammaging and cancer - PLOS ONE

Research article published January 25, 2019 
PLOS ONE | https://doi.org/10.1371/journal.pone.0210863 

Mats I. Nilsson et al.
Abstract

Biological aging is associated with progressive damage accumulation, loss of organ reserves, and systemic inflammation (’inflammaging’), which predispose for a wide spectrum of chronic diseases, including several types of cancer. In contrast, aerobic exercise training (AET) reduces inflammation, lowers all-cause mortality, and enhances both health and lifespan. In this study, we examined the benefits of early-onset, lifelong AET on predictors of health, inflammation, and cancer incidence in a naturally aging mouse model (C57BL/J6). Lifelong, voluntary wheel-running (O-AET; 26-month-old) prevented agerelated declines in aerobic fitness and motor coordination vs. age-matched, sedentary controls (O-SED). AET also provided partial protection against sarcopenia, dynapenia, testicular atrophy, and overall organ pathology, hence augmenting the ‘physiologic reserve’ of lifelong runners. Systemic inflammation, as evidenced by a chronic elevation in 17 of 18 pro- and anti-inflammatory cytokines and chemokines (P < 0.05 O-SED vs. 2-month-old Y-CON), was potently mitigated by lifelong AET (P < 0.05 O-AET vs. O-SED), including master regulators of the cytokine cascade and cancer progression (IL-1β, TNF-α, and IL-6). In addition, circulating SPARC, previously known to be upregulated in metabolic disease, was elevated in old, sedentary mice, but was normalized to young control levels in lifelong runners.
Remarkably, malignant tumours were also completely absent in the O-AET group, whereas they were present in the brain (pituitary), liver, spleen, and intestines of sedentary mice. Collectively, our results indicate that early-onset, lifelong running dampens inflammaging, protects against multiple cancer types, and extends healthspan of naturally-aged mice.

 
Full article